定制热线:0755-22277778
电话:0755-22277778
手机:13826586185(段先生)
传真:0755-22277776
邮箱:duanlian@xianjinyuan.cn
导电高分子材料是主链具有共轭主电子体系,可通过掺杂达到导电态,电导率达1000S/cm以上的高分子材料。经过40年的发展,人们对于导电高分子的类型、导电机理以及如何提高其导电率进行了深入的研究,对于导电高分子的合成与应用进行了多方面的探索。由于其独特的性能,导电高分子不仅作为导电材料应用广泛,在能源、光电子器件、传感器、分子导线等领域也有着潜在的应用价值。
一、复合型导电高分子材料
复合型导电高分子材料中填料的分散状态决定了材料的导电性,从渗流理论中可看出,孤立分散的填料微粒松散地填充于材料中时,当体积分散达到一定的临界含量以后,就可能形成一个连续的导电通路。这时的离子处于两种状态:一是电荷载流子可以在导体内连续地流动,此时离子间发生的是物理接触;二是由于离子间存在粘接剂薄层,载流子本身被激活而运动。所以,复合型导电高分子材料能导电的条件是填充材料应该既一定程度地分散,又能形成松散的网络分布。
复合型导电高分子材料中填充材料的成分、填料粒子的分散状态及其与聚合物基体的相互作用都决定了复合材料的导电性,要想材料能具有更良好导电性,必须使填料粒子既能较好地分散,又能形成三维网状结构或蜂窝状结构。
二、结构性导电高分子材料
离子型导电高分子材料中,像聚醚、聚酯这样的大分子链会形成螺旋体的空间结构,阳离子与其配位络合,并且在大分子链段运动促进下在其螺旋孔道内通过空位进行迁移,或者是被大分子“溶剂化”了的阴阳离子在大分子链的空隙间进行跃迁扩散。
电子型导电高分子材料中,主体高分子聚合物大多数为共轭体系,长链中的π键电子活性较大,尤其是与掺杂剂形成电荷转移络合物之后,很容易就会从轨道上逃逸出来而形成自由电子。
大分子链内以及链间的π电子由于轨道重叠交盖可以形成导带,这样就可以为载流子的转移和跃迁提供通道,在外加能量以及大分子链振动的推动下就可以传导电流了。
导电高分子材料可以通过产生的方式和结构的不同分为复合型材料与结构型材料两类,这两类材料虽然具有较为相似的特性,但是也存在着较大的差别,而且应用的方向和范围也有所不同。
一、复合型导电高分子材料
由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。
二、结构性导电高分子材料
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小可分为高分子半导体、高分子金属和高分子超导体。按照导电机理分为电子导电高分子材料和离子导电高分子材料。
电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。如在聚乙炔中掺杂少量碘,电导率可提高12个数量级,成为“高分子金属”。经掺杂后的聚氮化硫,在超低温下可转变成高分子超导体。
结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。
导电高分子材料是近二三十年才发展起来的新兴材料。1975年,L.F.Nichols等人在实验室合成了在低温下具有超导性、导电能力可以与银相媲美的聚硫化氮(SN)x,打破了高分子聚合物是绝缘体这一禁锢。两年后,日本筑波大学Shirakawa教授发现掺杂聚乙炔(PA)呈现金属特性,从此,新的交叉学科—导电高分子科学就诞生了。导电高分子材料实现了从绝缘体到半导体、再到导体的变化,是所有材料中形态跨越幅度更大的材料,也是迄今为止任何材料都无法比拟的。它独特的结构、优异的物理和化学性能引起了学术界的广泛重视,并在各个领域得到广泛应用。电解电容器就是一个很重要的例子。目前,应用广泛的铝电解电容器用的是液体电解质,这种电容器虽有大容量、小体积、低价格等特点,但是,由于使用液体电解质,使它的性能受到限制。钽电解电容器较铝电解电容器有一定的改进。
铝电解电容器不能像钽电解电容器那样采用硝酸锰热分解的方法制备固体电解质MnO2,而导电高分子材料成为制备铝电容器固体电解质的优选材料。1983年,日本的三洋电机开发了采用有机半导体TCNQ复盐材料作为电解质的铝电解电容器(OS-CON)。1989年4月,日本又开发了采用导电高分子材料聚吡咯(PPY)作为电解质的叠片式铝电解电容器(SP-CON)。1996年后,又出现了以聚乙撑二氧噻吩(PEDT)作为工作电解质的卷绕式铝电解电容器。目前,聚苯胺、聚吡咯在固体电解质电容器中的应用均有报道,这里主要介绍聚苯胺、聚吡咯的合成方法。
一、聚苯胺的合成
在导电高分子材料中,作为一种最有可能在实际中得到应用的导电聚合物材料,聚苯胺(PAn)具有单体廉价易得、聚合方法简单等优点。导电态的聚苯胺有优异的电化学性能、良好的化学稳定性及较高的电导率。常温下,聚苯胺是典型的半导体材料,其电导率为10-10S/cm,经掺杂以后,聚苯胺电导率可达到5S/cm,电导率可在10-10S/cm~100S/cm之间调节。它的颜色能随着电极电位和溶液的pH值的变化而变化,具有良好的电化学反应活性,是新型的电极活性材料,成为目前导电高分子材料研究中的热点。以前的固体电解质电容器由多孔金属如钽、铌作阳极,在金属上形成氧化膜作为电介质层,用二氧化锰作阴极。最近,大量报道用聚合物作阴极。聚苯胺的合成可采用化学和电化学合成,随着聚合方法、溶液组成及反应条件的改变,聚合得到的聚苯胺在组成结构和性能上均有很大的差异。在制作电解电容器的过程中,选择化学法或电化学法,因基层的不同而异。对于聚苯胺在电容器阳极上的合成,化学法需要氧化剂,但反应可以在室温下进行,反应更易做到;电化学法不需要氧化剂,聚合反应在电极上进行,但电化学聚合使得包覆物不一定均匀。如果基层薄膜的电阻高于1.5Ω/cm2,就不能选用电化学法,只能选择化学氧化法;如果基层薄膜电阻低于1.5Ω/cm2,化学法和电化学法均可选用。
二、聚苯胺的化学合成氧化聚合
化学氧化法合成聚苯胺是在适当的条件下用氧化剂使苯胺发生氧化聚合。这是在制作电容器时应用比较广泛的一种方法。苯胺的化学氧化聚合通常是在苯胺/氧化剂/酸/水体系中进行的。大致的方法是在玻璃容器中将苯胺和酸按一定的比例混合均匀后,用冰水浴将体系温度降低至0℃~25℃,在搅拌下滴加氧化剂,3分钟内滴加完毕。体系颜色由浅变深,继续搅拌90分钟,然后过滤,洗涤至滤液无色,得到墨绿色的聚苯胺粉末。
比较常用的氧化剂有过硫酸铵((NH4)2S2O8)、重铬酸钾(K2Cr2O7)、过氧化氢(H2O2)和碘酸钾(KIO3)等。过硫酸铵由于不含金属离子、氧化能力强,所以应用较广。最近报道的应用二氧化锰(因为二氧化锰的来源广,价格低廉、无毒,安全性高,制造方便)作为氧化剂,用盐酸作介质,采用化学氧化法成功地合成了导电聚苯胺。同时,得到的聚苯胺的结构和电导率与过硫酸铵(APS)作为氧化剂时相似。
由表1可知,在同等条件下合成聚苯胺,用APS作氧化剂与用MnO2作氧化剂时的转化率相当,APS作氧化剂高于MnO2作氧化剂时的电导率。尽管电导率有所差异,MnO2仍是苯胺聚合的可选择的氧化剂。
先进院(深圳)科技有限公司, © 2021 www.leird.cn. All rights reserved 粤ICP备2021051947号-1 © 2021 www.xianjinyuan.cn. All rights reserved 粤ICP备2021051947号-2